
Steam trapping overview

First for Steam Solutions

EXPERTISE | SOLUTIONS | SUSTAINABILITY

The benefits of effective steam trapping

Spirax Sarco are focused on helping our customers achieve process efficiency, increased production output and energy savings, and we know the importance of effective steam trap management in achieving this. A healthy steam trap population allows condensate to be removed from the steam system effectively which means it can be re-used. We call this 'condensate recovery' and it saves energy and cost in a number of different ways:

Reduced fuel costs

Normally, condensate will contain around 25% of the usable energy of the steam from which it came. Returning this to the boiler feedtank can save thousands of pounds per year in energy alone.

Energy saving

Condensate returned to the feedtank reduces the need for boiler blowdown, which is used to reduce the concentration of dissolved solids in the boiler. This therefore reduces the energy lost from the boiler during the blowdown process.

Reduced water charges

Returning and re-using condensate reduces the requirement for fresh replacement water.

Reduced chemical treatment costs

Re-using as much condensate as possible minimises the need for costly chemicals to treat raw water.

Reduced effluent costs

In many countries there are restrictions on releasing effluent at elevated temperatures so it must be cooled if discharged which incurs extra costs.

Spirax Sarco are always on hand to advise you about the best ways to manage your steam system and to help ensure you continue to reap these benefits.

For more information about our steam trapping solutions, or any of our other solutions and services please visit spiraxsarco.com.

spiraxsarco.com

An introduction to steam traps

Each steam application has its own steam trap requirements. Selecting the right steam trap for your application could have a significant, positive impact on your process, potentially improving efficiency, reducing energy costs and giving you a safer working environment.

For example: condensate must be removed promptly from a plant where maximum heat transfer is sought at all times. The presence of excess condensate in an item of heat transfer equipment will reduce its efficiency, preventing it from achieving its maximum rated output and may also reduce its service life.

However; in other applications, it may be required to hold back the condensate to extract some of its heat and thus save on steam. Furthermore, by discharging condensate well below steam temperature, flash steam losses can be reduced or avoided altogether.

Thermodynamic steam traps

Maintaining optimum process performance

Thermodynamic steam traps are the best choice for steam mains drainage due to their simplicity, long life and robust construction. With a large condensate capacity for their size, the all stainless steel construction of our thermodynamic traps offer a high degree of resistance to corrosive condensate.

Mechanical steam traps

Maintaining optimum process performance

Mechanical steam traps are ideal for use on process applications where condensate must be removed as soon as it forms, to safeguard against temperature fluctuation which would lead to issues such as product spoilage and inadequate heating. Our mechanical steam trap range is adaptable to all applications where instantaneous removal of condensate is required.

Thermostatic steam traps

Utilising heat energy in condensate

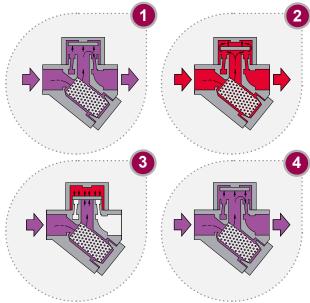
For applications where it would be desirable to make use of the heat in the condensate such as sterilisation, a thermostatic steam trap is an ideal solution as it will not open until the condensate temperature drops below saturated steam temperature. This allows the heat in the condensate to be utilised before it is drained off which in turn reduces flash steam losses and can help to reduce energy costs.

Spirax Sarco offers a complete range of steam traps to ensure you can select the perfect trap for your application.

Spirax Sarco's steam trap range

Steam trap operation	Thermodynamic	Mechai	nical	Thermostatic		
	Thermodynamic	Ball float	Inverted bucket	Balanced pressure	Bimetallic	
Steam trap types	SPECIAL PS		V		H	
Main features	 Robust design giving excellent resistance to waterhammer and vibration Inexpensive Positive discharge with tight shut-off Discharge condensate close to steam saturation temperature 	 High capacity Excellent air venting capabilities Continuous discharge of condensate for maximum heat transfer Will not back-up with condensate 	 High capacity Robust design Near continuous discharge of condensate Minimal back-up of condensate 	 Utilises sensible heat reducing flash steam energy Excellent air venting start-up 	losses, which saves	
Typical applications	Mains drainage and all tracing applications. Some process applications with light loads such as small presses and cylinders	Temperature / pressure controlled applications with fluctuating loads	Temperature / pressure controlled applications with fluctuating loads	 Where condensate ba tolerated or is required excess enthalpy, e.g. r 	l in order to remove	
Size	DN8 – DN25 (¼"– 1")	DN15 – DN100 (½" – 4")	DN15 – DN50 (½" – 2")	DN8 – DN25 (¼"– 1")	DN8 – DN100 (¼"– 4")	
Maximum body rating	PN250	PN100 and ASME Class 600	ASME 900	PN40 and ASME Class 300	PN420 and ASME Class 2500	
Maximum operating pressure	250 bar g	80 bar g	110 bar g	32 bar g	150 bar g	

Thermodynamic steam traps


How a thermodynamic steam trap works

1. On start-up, incoming pressure raises the disc and cooled condensate, and air is immediately discharged.

2. Hot condensate flowing through the trap releases flash steam. High velocity creates a low pressure area under the disc and draws it towards the seat.

3. At the same time there is a pressure build-up of flash steam in the chamber above the disc which forces it down against the pressure of the incoming condensate until it seats on the inner ring and closes the inlet. The disc also seats on the outer ring and traps pressure in the chamber.

4. Pressure in the chamber is decreased by condensation of the flash steam and the disc is raised. The cycle is then repeated.

- · Positive condensate discharge with clean tight shut-off
- Discharges condensate at very close to steam temperature that ensures maximum plant efficiency
- Just one moving part, a disc, ensures reliable operation and minimal maintenance without having to remove from the line
- · Compact and light weight, reducing installation costs
- · Hardened disc and seat for long life
- One trap covers a wide range of operating pressures making selection and replacement simple
- · Insulating cover for low ambient temperature or wet environments
- Thermodynamic traps can be used on high pressure and superheated steam and are not affected by waterhammer or vibration.

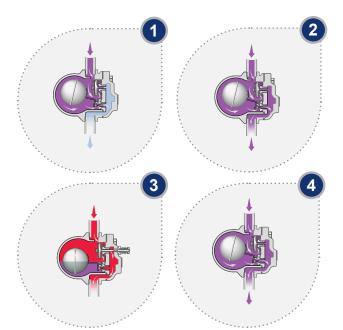
	Maximum				Sizes				
Material	operating pressure	Connection	DN8 1⁄4"	DN10 ¾"	DN15 ½"	DN20 ¾"	DN25 1"	Recommended installation	
O arth a marked	42 bar g	Socket weld				TD42S2 TD42S2LC		Horizontal	
Carbon steel	Carbon steel 46 bar g					TDC46M		Horizontal	
	10 bar g	Screwed	TD10					Horizontal	
	30 bar g	Swivel			(univ	UTD30L UTD30H ersal connec	tion)	Universal	
	32 bar g	Flanged				TD32F TD32FLC		Horizontal	
Stainless	42 bar g	Butt weld		TD3-3	TD3-3 TD3-3LC	TD3-3		Horizontal	
steel		Screwed	TD 259 TD52M	TD42LC TD42L TD52M	TD42 TD42LC TD42H TD42L TD52M TD52MLC	TD42 TD42H TD42L TD52M	TD42H TD42L TD52M	Horizontal	
	46 bar g	Swivel			UTDS46M			Universal	
	46 bar g	Screwed Socket weld Flanged				TDS46M		Horizontal	
	62 bar g	Screwed Socket weld Flanged				TD62M TD62LM		Horizontal	
Alloy steel	250 bar g	Socket weld Butt weld Flanged				TD120M			
Stainless steel	10 bar g	Screwed		BTD52L				Horizontal	
(Clean steam)		Clamp Tube end			BTD52L			Horizontal	

Thermodynamic steam traps - product range

Mechanical steam traps

Ball float mechanical steam traps

Ball float (FT) mechanical steam traps have an integral air vent as standard and the options of a manually adjustable needle valve (SLR - steam lock release mechanism) and drain cock tapping, the FT range is adaptable to all applications where ball float traps are recommended and instantaneous removal of condensate is required.


How a ball float steam trap works

1. On start-up a thermostatic air vent allows air to bypass the main valve (1) which would otherwise be unable to escape (a condition known as 'air-binding').

2. As soon as condensate reaches the trap, the float is raised and the lever mechanism opens the main valve. Hot condensate closes the air vent but continues to flow through the main valve.

3. When steam arrives the float drops and closes off the main valve, which remains at all times below the water level, ensuring that live steam cannot be passed.

4. As the steam condenses, the float rises allowing condensate to be released.

- Immediate condensate discharge with clean, tight shut-off. No backup of condensate ensures maximum plant efficiency
- Works efficiently on both heavy and light loads with no passage of live steam
- Not affected by wide and sudden fluctuations of pressure or flowrate
- Stainless steel internals that can tolerate corrosive condensate
- · Integral air vent to ensure rapid warm-up of plant
- Robust construction to guarantee long life against waterhammer and vibration.

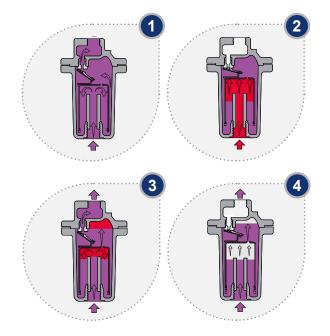
Ball float steam traps - product range

	Maximum					Siz	es				
Material	operating pressure	Connection	DN15 ½"	DN20 ¾"	DN25 1"	DN32 1¼"	DN40 1½"	DN50 2"	DN80 3"	DN100 4"	Installation
					FT43			-43 -53	F	Г43	Horizontal
Cast iron	13 bar g	Flanged			FT43V			43V 53V			Vertical down
	14 bar g	Screwed					F1	-14			Horizontal
		Screwed		FT1	4						Horizontal
	14 bar g	Screwed		FT14V							Vertical down
		Flanged		FT1	4						Horizontal
SG iron	21 bar g	Screwed			FT14HC	FT14					Horizontal
	32 bar g	Flanged		Т47 Г57				47 57			Horizontal
	52 bai y	Flanged	FT	47V			FT	47V			Vertical down
ENP coated SG iron	14.6 bar g	Screwed		FTGS	614						Horizontal
cover and stainless	14.0 bai g	Flanged	FTG		514						Horizontal
steel body 17 b	17 bar g	Screwed			FTGS14HC						Horizontal
	23 bar g	Flanged					FT	C23			Horizontal
		Screwed		C32					FT4	450*	Horizontal
		Socket weld	FTC	C32V							Vertical down
Carbon steel	32 bar g	32 bar g Flanged	FTC32 FT44 FT54		FT44 FT54		FT44 FT54		FT44 FT450*		Horizontal
			FTC32V FT44V FT54V		FT44V FT54V		FT44V FT54V				Vertical down
		Socket weld Flanged					FT	C80			Horizontal
	80 bar g	Screwed Socket weld Flanged		FTC	62						Horizontal
	23 bar g	Flanged					FT	S23			Horizontal
	19 bar g	Screwed Socket weld		FTS	14						Horizontal
Stainless	15 bai g	Flanged		FTS1	4V						Vertical down
steel	25.5 bar g	Flanged		FT4	6		FT	46			Horizontal
	32 bar g	Swivel		UFT	32						Universal
	65.8 bar g	Screwed Socket weld Flanged		FTS	62						Horizontal
Stainless steel (Clean	4.5 bar ΔP	Clamp		FTS14	-4.5						Horizontal
steam)				FTS14	/-4.5						Vertical down

* not PED approved

Mechanical steam traps

Inverted bucket mechanical steam traps


Our inverted bucket steam traps employ a well-proven principle which relies on the difference in density between steam (a vapour) and condensate (a liquid). They have a robust design and incorporate a simple density sensitive bucket and lever mechanism.

How an inverted bucket steam trap works

1. As condensate reaches the trap it forms a waterseal inside the body. The weight of the bucket keeps the valve off its seat. Condensate can then flow around the bottom of the bucket and out of the trap.

2. When steam enters the underside of the bucket it gives it buoyancy and the bucket rises. This positions the lever mechanism such that the main valve 'snaps' shut due to flow forces.

3. The bucket will lose its buoyancy as the enclosed steam condenses due to radiation losses and steam escapes through the vent hole. Once this happens the weight of the bucket will pull the valve off its seat and the cycle is then repeated.

4. Any air reaching the trap will also give the bucket buoyancy and close the valve preventing condensate flow. The small vent hole positioned at the top of the bucket will lead air into the top of the trap. Because the vent hole at the top of the bucket is small in diameter it will vent air very slowly. Where the venting of air may be a particular problem, this can be overcome simply by fitting an external air vent in parallel.

- Near continuous condensate discharge with tight shut-off. Minimal back-up of condensate ensures maximum plant efficiency
- · Deep water-seal to protect against the possibility of steam loss
- · Suitable for superheat conditions when fitted with internal inlet check valve
- Simple and robust construction to guarantee long life against waterhammer and vibration
- · Stainless steel internals are attached to the cover for ease of maintenance
- Integral strainer (HM, HM34 and SCA models only)
- Optional blowdown valve (only for HM and HM34).

Inverted bucket steam traps - product range

	Maximum				Sizes				
Material	operating pressure	Connection	DN15 ½"	DN20 ¾"	DN25 1"	DN40 1½"	DN50 2"	DN80 3"	Installation
	13 bar g	Screwed Flanged		S					Horizontal
Cast iron	14 bar g	Screwed Flanged		НМ					Horizontal
	22 bar g	Screwed Flanged	200					Vertical	
	32 bar g	Screwed Socket weld Flanged		HM34					Horizontal
Carbon steel	41 bar g	Screwed Socket weld Flanged		SCA					Horizontal
	116 bar g	Screwed Socket weld Flanged	IBV Series C IBV Series C-LDF2					Vertical	
	30 bar g	Screwed Socket weld Flanged		SIB30 SIB30H					Horizontal
Stainless	30 bai y	Swivel		UIB30 UIB30H					Universal
steel	60 bar g	Screwed Flanged		SIB45					Horizontal
	63 bar g	Swivel	UIB46						Universal
Alloy steel	123 bar g	Screwed Socket weld Flanged		IBV Series Z					Vertical

Thermostatic steam traps

How a balanced pressure thermostatic steam trap works

1. On start-up, cold air and condensate enter the trap. As the capsule is also cold, the valve is open and the air and condensate are discharged.

2. The capsule warms up as the condensate approaches steam temperature. Its liquid filling boils, and the resultant vapour pressure acting on the diaphragm pushes the valve head towards the seat, fully closing at the selected discharge temperature before any steam is lost.

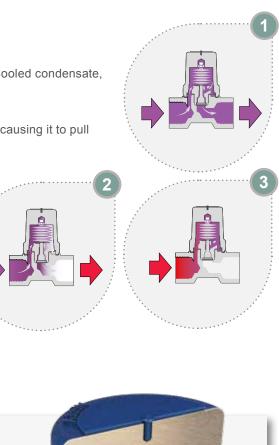
3. As the condensate within the trap cools, the vapour filling condenses and the internal capsule pressure falls. The valve reopens, discharges condensate and the cycle repeats.

- Condensate is discharged at below steam saturation temperature, utilising sensible heat in the condensate and reducing flash steam losses
- · Automatically discharges air and other incondensable gases to aid rapid warm-up of plant
- It automatically adjusts itself to variations of steam pressure up to its maximum operating pressure and can tolerate superheat up to 70°C
- Discharge temperature set by capsule selection no requirement to adjust on site
- Manufactured using advanced technology to exacting quality standards
- All stainless steel internals extend working life and reduce plant maintenance
- The BPC32 and BPS32 series has a two bolt cover design for ease of maintenance.

Balanced pressure thermostatic steam traps - product range

	Maximum				Siz	zes			_
Material	operating pressure	Connection	DN8 1⁄4"	DN10 ¾"	DN15 ½"	DN20 ³⁄4"	DN25 1"	DN40 1½"	Recommended installation
Brass	13 bar g	Screwed			BPT13S BPT13US				Horizontal
DIASS	15 bar g	Screwed			BPT13A BPT13UA				Angle
	21 bar g	Screwed		BPN	/121L				Horizontal
Carbon	21 bar g	Socket weld			BPM21L				Horizontal
steel		Screwed Socket weld				BPC32 BPC32Y			Horizontal
	32 bar g	Flanged			BPC32 BPC32F BPC32Y BPC32YF			Horizontal	
	21 bar g	Screwed		T21	MST21 MST21H TSS21	MST21H			Vertical down
	21 bar g	Sandwich between flanges			BPW32				Vertical down
Stainless steel	30 bar g	Screwed Socket weld Flanged			SBI	SBP30			Horizontal
	32 bar g	Screwed Socket weld Flanged			BPS32 BPS32Y				Horizontal
	52 bai g	Swivel				UBP32			Universal
		Screwed	BTM7 BTS7			BTM7 BTS7			Vertical down
Stainless steel	7 bar g	Clamp				BTM7 BTS7 BTS7.1			Vertical down
(Clean steam)		Tube end		BTM7 BTS7					Vertical down
	6 bar g	Clamp Tube end					S-BH S-BL		Vertical down

Thermostatic steam traps


How a bimetallic thermostatic steam trap works

1. On start-up, the bimetallic element is relaxed and the valve is open. Cooled condensate, plus air, is immediately discharged.

2. Hot condensate flowing through the trap heats the bimetallic element causing it to pull the valve towards the seat.

3. As the hot condensate is discharged and approaches steam saturation temperature the bimetallic element closes the valve. When there is no flow through the trap the condensate surrounding the element cools causing it to relax and the upstream pressure opens the valve. Condensate is discharged and the cycle repeats.

- Condensate is discharged at below steam saturation temperature, utilising sensible heat in the condensate and reducing flash steam losses
- Automatically discharges air and other incondensable gases to aid rapid warm-up of plant
- The bimetal elements can work over a wide range of steam pressures without any need for on-site adjustment
- · Resistant to waterhammer and freezing
- The SMC32 series has a two bolt cover design for ease.

Bimetallic t	thermostatic	steam	traps	- product	range
--------------	--------------	-------	-------	-----------	-------

	Maximum						s	izes				
Material	operating pressure	Connection	DN8 1⁄4"	DN10 3/8"	DN15 ½"	DN20 3⁄4"	DN25 1"	DN40 1½"	DN50 2"	DN80 3"	DN100 4"	Recommended installation
	21 bar g	Socket weld Butt weld Flanged								SP80	SP100	Horizontal
		Screwed Socket weld Butt weld			1	SMC32 SMC32						Horizontal
Carbon steel	32 bar g	Flanged		SMC32 SMC32F SMC32Y SMC32YF						Horizontal		
	45 bar g Butt weld Flanged		HP45						Horizontal			
	17 bar g	Screwed	Т3						Vertical down			
Stainless	21 bar g	Swivel			USM21						Universal	
steel	00 k	Swivel		USM32							Universal	
	32 bar g	Screwed Socket weld Flanged	PB		PBX						Horizontal	
	45 bar g	Screwed Socket weld Butt weld Flanged	SM45						Horizontal			
Alloy steel	80 bar g		SM80			SM80						Horizontal
	100 bar g	Socket weld Butt weld			SM100						Horizontal	
	150 bar g					SM150						Horizontal

Reducing production running costs

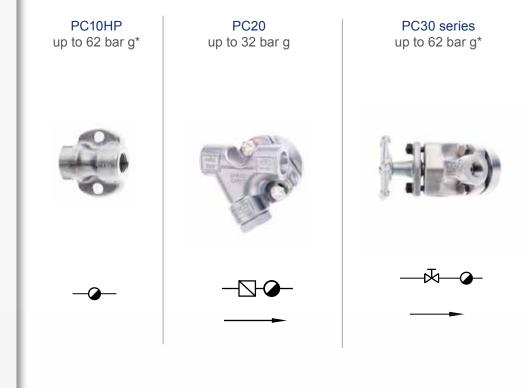
Spirax Sarco can supply fabricated steam trap stations and a range of 'quick-fit' solutions that will allow rapid steam trap replacement and significantly reduce labour costs.

Universal steam traps for use with pipeline

UTD30L and UTD30H up to 30 bar g

Thermodynamic steam trap

UTDS46M up to 46 bar g*


Thermodynamic steam trap

Key features:

- A simple two-bolt connector design allows quick and simple maintenance of a steam trap -Reducing system downtime and maintenance costs compared to traditional trapping stations
- Single permanent in-line component for ease of specification and installation
- Prefabricated construction minimises on-site fabrication and the welded joints eliminate potential leak paths
- All stainless steel construction for maximum system life.

Pipeline connectors

spiraxsarco.com

connectors for a 'quick fit'.

UFT32 up to 32 bar g

Ball float steam trap

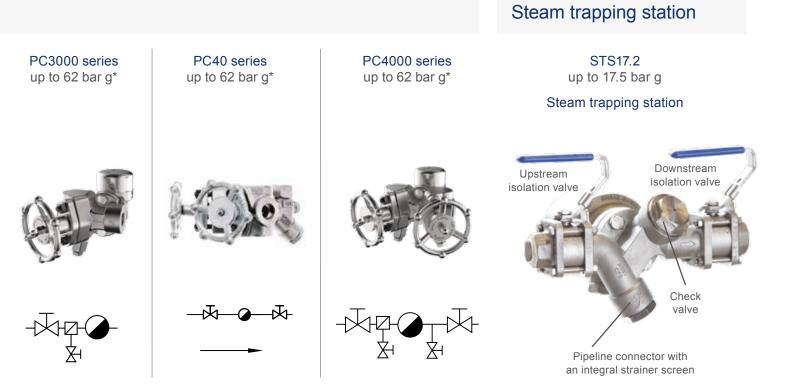
UIB30/UIB30H up to 30 bar g

UIB45 up to 63 bar g*

Inverted bucket steam trap

Balanced pressure steam trap

USM21 up to 21 bar g


USM32 up to 32 bar g

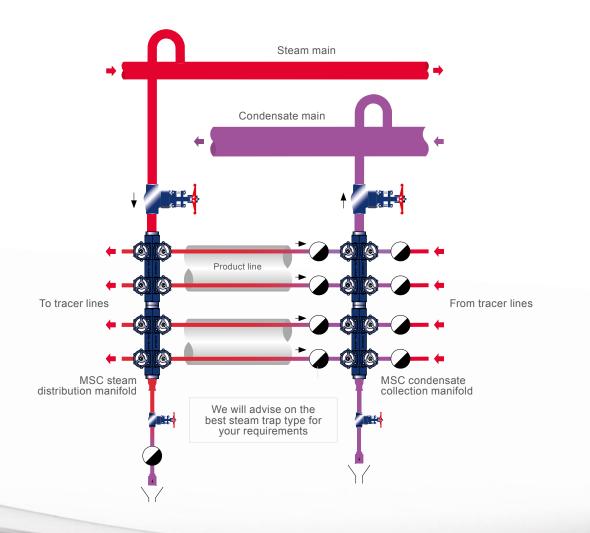
Bimetallic steam trap

The pipeline connectors require 2 bolts for connection with a steam trap.

*subject to limitation of pipeline connector

* Subject to pressure limits of trap selected

Steam tracing using our compact dual duty manifold


Steam tracing is used principally to maintain a reasonable product temperature and viscosity in order to simplify pumping, avoid freezing, solidification and stagnation. Although the rates of condensate are relatively small, trap populations will be large since all tracer lines should be individually trapped. For ease of design and layout, the condensate from the traps is collected in a manifold. The steam to the tracers can be distributed utilising a similar manifold arrangement.

Our forged MSC series manifold minimises on-site fabrication and testing.

Key features:

- · Minimises on-site fabrication and testing
- · Lower cost than conventional welded design
- · Shortens project lead times
- · Space saving with standardised design
- Lightweight to support and easy to install with optional mounting kit
- · Easy to maintain
- Optional insulation jacket for energy conservation.

Manifold type	Number	D	DN		cer connec	ctions	EN 10204 3.1.B	Opti	ons
Manifold type	of tracer connections	15	20	BSP	NPT	sw	certification	Insulation jacket	Mounting kit
MSC04	4	•	•	•	•	•	Standard	•	٠
MSC08	8	•	•	•	•	•	Standard	•	٠
MSC12	12	•	٠	•	•	•	Standard	•	٠

Make your steam system safe, efficient and sustainable

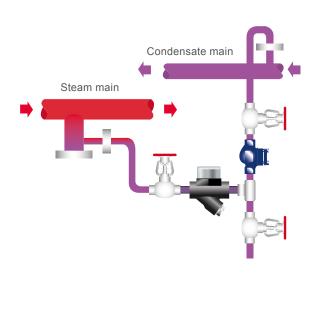
The duty of a steam trap is to discharge condensate while retaining live steam in the system. This ensures your steam system is able to operate efficiently, without the detrimental effects of unwanted condensate essential in temperature critical applications.

Condensate in the system can lead to a number of issues such as:

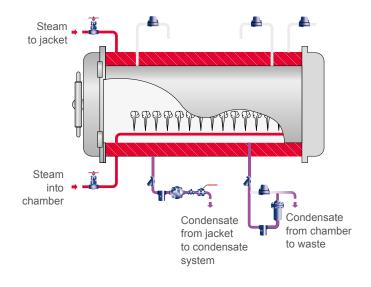
- Poor heat transfer
- Damage to system and process equipment
- Poor quality or wasted product

Selecting the right steam trapping solution helps to avoid these problems, whilst at the same time allowing the condensate to be recovered. Information on the significant benefits of recovering condensate can be found at the back of this brochure.

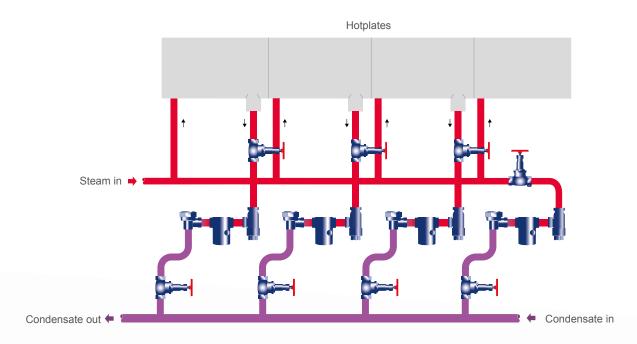
How can Spirax Sarco help you?


We've been in the business of steam solutions for over 100 years and with our exceptional team of specialists, we take the time to understand your needs and work with you to find the most effective steam trapping solutions for your applications.

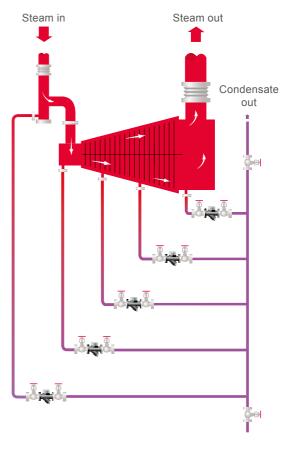
Our aim is to help you meet your sustainability and efficiency goals by ensuring your steam system operates at its optimum level at all times. Effective steam trapping is a key factor in achieving this objective.



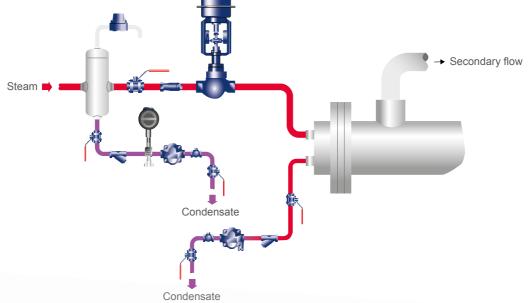
Typical applications for steam traps


Mains drainage

Vulcaniser application



Hot plate process



Process equipment

Turbine drainage

Drainage of a separator

Operating Companies

Netherlands

South Africa

Poland

Portugal

Russia

Spain

EMEA

Belgium
Czech Republic
Denmark
Egypt
Finland
* France
Germany
Ireland
* Italy

Sweden Switzerland Turkey * UK

Americas

Middle East

Norway

7 1110110010	
* Argentina	Colombia
* Brazil	* Mexico
Canada	Peru
Chile	*USA

Asia Pacific

Australia	Philippines
* China	Singapore
* India	South Korea
Indonesia	Taiwan
Japan	Thailand
Malaysia	Vietnam
New Zealand	

* Manufacturing sites

in You Tube f

Sales Offices

EMEA

Austria Hungary Ivory Coast Jordan Kazakhstan Kenya Romania Slovak Republic Ukraine

Americas

Costa Rica Panama

Asia Pacific

Cambodia Hong Kong Myanmar

Distributors

EMEA		
Algeria	Iceland	Morocco
Bahrain	Israel	Namibia
Bulgaria	Kuwait	Nigeria
Cameroon	Latvia	Oman
Croatia	Lebanon	Qatar
Cyprus	Lithuania	Saudi Arabia
Ethiopia	Madagascar	Slovenia
Estonia	Malawi	Sudan
Ghana	Malta	
Greece	Mauritius	
Americas		
Bolivia	Guatemala	Nicaragua
Dominican Republic	Honduras	Paraguay
Ecuador	Jamaica	Trinidad and Tobago
El Salvador	Netherland Antilles	Uruguay
Asia Pacific	Fiji	Pakistan
Bangladesh	сіі	Fanistall

Spirax-Sarco Limited, Charlton House, Cheltenham, Gloucestershire, GL53 8ER, UK T +44 (0)1242 521361 F +44 (0)1242 573342 E enquiries@uk.spiraxsarco.com

Spirax-Sarco ensures that it is fully compliant with all United Nations, European Union and U.S. sanctions in relation to the supply of its products and services. In relation to the manufacture of our products, we ensure we do not use conflict minerals. © Copyright 2016 Spirax Sarco is a registered trademark of Spirax-Sarco Limited

SB-GST-33 ST Issue 5